- конечномерное представление
- скінченнови́мірне́ зобра́ження
Русско-украинский политехнический словарь. 2013.
Русско-украинский политехнический словарь. 2013.
КОНЕЧНОМЕРНОЕ ПРЕДСТАВЛЕНИЕ — линейное представление топологич. группы в конечномерном векторном пространстве. Теория К. п. является одним из наиболее разработанных и важных разделов общей теории представлений групп. Неприводимое К. п. вполне неприводимо (см. Шура лемма), но… … Математическая энциклопедия
ПРЕДСТАВЛЕНИЕ ГРУППЫ — изображение элементов группы матрицами или преобразованиями линейного пространства, при к ром сохраняется исходная групповая структура. Поскольку достаточно хорошо изучены матричные группы, при исследовании произвольной группы стараются… … Физическая энциклопедия
ПРЕДСТАВЛЕНИЕ ГРУППЫ — гомоморфизм группы в группу всех обратимых преобразований нек рого множества V. Представление р группы Gпаз. линейным, если Vявляется векторным пространством над нек рым полем k, а преобразования r(g), , линейными преобразованиями. Часто линейные … Математическая энциклопедия
ПРЕДСТАВЛЕНИЕ ТОПОЛОГИЧЕСКОЙ ГРУППЫ — непрерывное отображение группы G в топологич. группу гомеоморфизмов нек рого топологич. пространства. Чаще всего под П. т. г. Gпонимается линейное представление, более того такое линейное представление л топологич. группы G в топологич. векторном … Математическая энциклопедия
ПРЕДСТАВЛЕНИЕ СО СТАРШИМ ВЕКТОРОМ — линейное представление r конечномерной полупростой расщепляемой алгебры Ли над полем kхарактеристики нуль с расщепляющей Картана подалгеброй t, удовлетворяющее следующим условиям. 1) В пространстве Vпредставления r существует циклический вектор v … Математическая энциклопедия
БЕСКОНЕЧНОМЕРНОЕ ПРЕДСТАВЛЕНИЕ — группы Ли представление группы Ли в бесконечномерном векторном пространстве. Теория представлений групп Ли есть часть общей теории, представлений то пологич. групп. Специфика групп Ли позволяет использовать в этой теории средства анализа (в… … Математическая энциклопедия
КОНТРАГРЕДИЕНТНОЕ ПРЕДСТАВЛЕНИЕ — к представлению j группы Gв линейном пространстве V представление j* этой же группы Gв двойственном к Vпространстве V*, определяемое правилом: для любого где * означает переход к сопряженному оператору. Более общо, если W линейное пространство… … Математическая энциклопедия
ОПЕРАТОРНО НЕПРИВОДИМОЕ ПРЕДСТАВЛЕНИЕ — представление p группы (алгебры, кольца, полугруппы) Xв (топологическом) векторном пространстве Етакое, что любой (непрерывный) линейный оператор в пространстве Е, перестановочный со всеми операторами (х), , кратен единичному оператору в Е. Если… … Математическая энциклопедия
КОНЕЧНОЙ ГРУППЫ ПРЕДСТАВЛЕНИЕ — гомоморфизм конечной группы Gв группу обратимых линейных операторов в векторном пространстве над полем К. Теория К … Математическая энциклопедия
ЛИ РАЗРЕШИМАЯ ГРУППА — группа Ли, разрешимая как абстрактная группа. В дальнейшем рассматриваются вещественные или комплексные Ли р. г. Нильпотентная, в частности абелева, группа Ли разрешима. Если F={Vi} полный флаг в конечномерном векторном пространстве V(над или ),… … Математическая энциклопедия
Теорема Машке — теорема теории представлений, утверждающая при определённых условиях на характеристику поля, что всякое конечномерное представление конечной группы раскладывается в прямую сумму неприводимых. Формулировка Теорема. Если характеристика поля char F… … Википедия